
August 1999
1

The Robot Builder
Volume Eleven Number Eight August 1999Notices

• Introductory Mobile
 Robotics Class -
 10:00AM - 12:00PM

• Business Meeting -
 12:30 - 1:00

• General Meeting -
 1:00 - 3:00

Distribution

If you would like to
receive The Robot
Builder via e-mail,

contact the editor at:

apendragn@earthlink.net

Inside this Issue

Introduction to Neural Nets
……………………………..1

The New Millennium Remote
Agent Architecture ……….. 2

Introduction to Neural Nets
Part 2

by Arthur Ed LeBouthillier

In our last installment (The Robot Builder,
July 1999), we introduced the basic neural
net model and showed how it might be
implemented in a program. In this article we
will review a common learning algorithm
that would modify the weights in the
program provided last month.

How do we teach a neural net?
We know that the intelligence in a neural net
is embodied in the connections between cells
and the weights between them. In the multi-
layer perceptron (MLP), the cells are
connected in layers so that the input layer
feeds into a hidden layer and the hidden
layer feeds into the output layer. Since the
MLP defines the connection structure, we
are left with only determining the weights
between the cells of one layer and the next.
Once the proper weights are determined, we
no longer need the training algorithm and we
use the program described last month to use
the neural net for a useful purpose.

So how do we do it? We will modify the
weights of the neurons so that those neurons
that properly determine the output are
enhanced and those that generate the wrong
output will be inhibited in accordance with
the degree of the change they produce in the
result. Our job will entail telling the neural
net, through the learning algorithm, what the
proper output should be for the given input;

we must do this for all of the desired training
samples. After modifying the network
appropriately, the network will then be
trained to provide the proper output for each
of the provided inputs.

If we concentrated on what the output
should be and then, going backwards
towards the input, modified each layer’s
weights so that they produced the proper
answer with the training sample, then we
would have the correct answer for one
training sample. We only need to do this for
all samples until the difference between the
desired output and the actual output is small.
This is the basis of the Backpropagation
learning algorithm.

The Backpropagation Algorithm
The backpropagation learning algorithm
works by propagating the error in the output
layer backwards towards the hidden layer
and then modifies the hidden layer weights
so that they reflect more accurately what the
output should be for its input. The weights
are only modified by the amount of change
they produce in the output. It repeats this
process for all test samples until the network
is trained. There are complicated
mathematical explanations for how this
works, but we won’t cover that. Suffice it to
say that the algorithm treats the n inputs of
the input layer as an n-dimensional surface
and then heads “down hill” on that surface
until the output error is minimized. It
continuously modifies

WARNING - The attorney general has concluded
that this article contains mathematics that may be
hazardous to your health.

(see Neural Net on page 5)

August 1999
2

In the movie 2001: A Space Odyssey, the spacecraft
embodying HAL was essentially a large robot. It
was composed of an artificial intelligent component,
HAL, and the spaceship itself with all of its
automatic effector systems. HAL, although a
fictional program, represented an entity which was
aware both of itself and events surrounding it. When
there were hardware problems in the spacecraft,
HAL was able to identify these problems, solve
them him- or it-self or alert the crew to solve them.
With its New Millennium Remote Agent (NMRA),
NASA is heading in the direction of providing
similar capabilities for future autonomous
spacecraft.

The New Millennium Remote Agent was designed
as an autonomous control and planning system
enabling autonomous robotic spacecraft for space
exploration. It eventually flew on the Deep Space
One spacecraft and successfully demonstrated its
capabilities in several tests, some of which are still
ongoing. Such highly autonomous systems are vital
for future space exploration because they reduce the
cost of exploration while enhancing capabilities.
They reduce costs because they require fewer
ground-based operators, who would be required for
the duration of missions which could last years, and
because they allow the spacecraft to be more robust

to failure because they are able to continue
operating even after system failures. They are also
important because they allow more autonomous
spacecraft to operate at once because they require
lower bandwidth to control; they do not require
minute instructions for the every operation but can
be given more abstract commands which are
executed by the spacecraft. This is deemed to be
important in the years to come because of
limitations in the bandwidth of the Deep Space
Network at the same time that the number of
operations is expected to increase dramatically. As
roboticists, it is important to review the New
Millennium Remote Agent (NMRA) architecture
since it provides an example of an advanced robot
control architecture from which we can learn.

Deep Space One
The Deep Space One spacecraft, although utilizing
many cutting-edge technologies, represents a typical
spacecraft in its functional layout. It has a control
system based on a radiation-hardened version of the
IBM 6000 RISC processor with 128 Megabytes of
RAM and 16 Megabytes of EEPROM. It has many
interacting systems such as an unconventional ion
thruster system, a conventional attitude control
system, several scientific instruments, a
communication system

The New Millennium Remote Agent Architecture
by Arthur Ed LeBouthillier

Ground
System

Flight
Hardware

Real-time
Control

Monitors

Planning Experts

Figure 1 - The Remote Agent embedded in Deep Space One’s Flight Software

Remote Agent

Mission Manager
Reactive Executive

Planner-
Scheduler

Mode ID
and Reconfiguration

(see Remote Agent on page 3)

August 1999
3

(see Remote Agent on page 4)

which maintains communications with Earth-based
controllers and several navigation sensors to identify
its orientation and location in space. All of these
components operate under strict energy budgets
because all power is derived from solar cells or on-
board fuel. Almost all systems have a minor amount
of functional redundancy allowing reduced
operation should some part of them fail. Operating
the system despite failures is one of the major jobs
of the Remote Agent.

Running on the spacecraft’s computer is the Vx-
Works Real-time Operating system. Operating in
this operating environment are a number of standard
software components used for controlling the
spacecraft’s attitude and thrust systems and the
Remote Agent. The Deep Space One spacecraft was
not designed to work solely with the Remote Agent,
so it maintains a complete operating suite of
software for navigation as well as navigational
control.

The Remote Agent
The Remote Agent interfaces to the spacecraft
control system similarly to how the standard Earth-
based control system. Rather than receive direct
motor-control messages from Earth, the Remote
Agent deduces its activity from the goal database
and performs the control duties. It essentially
becomes an independent onboard mission control
system to navigate and control the spacecraft in
accordance with its mission directives. These
mission directives can be uploaded from Earth. This
saves an enormous amount of communication
bandwidth since high-level abstract commands are
sent instead of raw control data.

The Remote Agent (RA) consists of three major
functional elements distinct from the normal control
software of the Deep Space One spacecraft: the
Mission Manager which performs planning and
scheduling, the Reactive Executive which carries
out the direct control tasks and the Mode
Identification and Reconfiguration (MIR) system
which performs model-based reasoning about the
condition of the spacecraft, allowing it to
reconfigure and control itself despite numerous

faults. It is this last component that makes the
Remote Agent somewhat unique in robotic control
systems. The MIR system allows the RA to reason
about the status of various systems and reconfigure
its reactive mechanisms to continue working despite
system failures.

The Mission Manager
The Mission Manager is responsible for creating
short-term plans based on long-term mission goals.
It does this with a Planner/Scheduler (PS) which is
able to reason about time and resource constraints
and generate a flexible time-constrained plan for
execution by the Reactive Executive. The Remote
Agent is not launched with a detailed list of
operations to occur at specific times, but is given a
list of goals from which a sequence of commands
must be generated by the Mission Manager. The
Mission Manager determines the goals which have
to be achieved over a period of a week or two and
passes them to its Planner/Scheduler. The plan
produced by the Planner/Scheduler constrains the
types of activities that must be performed at
specified times but does not detail how those
activities will be carried out. They state such things
as requirements for star measurements to establish
the spacecraft location and a rough time at which
they are to occur, when engines are to be turned on
for desired orientations and directions, and what
activities scientific instruments should engage in.
The plans are not specific step-by-step action lists,
but rather represent behavior envelopes for the
Reactive Executive. The planner does this using
fairly-standard AI reasoning and planning
techniques which consider time constraints, goal
priorities and resource limitations. Action planning
and resource allocation are considered
simultaneously in the generation of the plans so that
considerations of the effects of actions on resources
can be part of the planning process. A final part of
each plan details the next time that planning should
occur. This allows the Mission Manager/Planner
Scheduler to be shut down when it is not needed.

The Reactive Executive
It is the job of the Reactive Executive to take the
plans produced by the Mission Manager and turn

Remote Agent from Page 2

August 1999
4

them into specific instrument control activities. It
performs process synchronization, process
dependency management, hardware reconfiguration,
and runtime resource management and executes
fault-recovery procedures. It is able to execute and
manage multiple activities simultaneously and
invokes the Mission Manager’s planner and the
Mode Identification facilities to help it perform
these duties. The Reactive Executive generates the
specific control signals that control the spacecraft
hardware by taking into account its knowledge of
the state of various instruments and devices (i.e.
current status and known problems of hardware),
the goals it has for them, and the rough times
activities should occur. When failures occur in the
execution of a process, the executive first invokes
the MIR system to attempt recovery and then can
invoke the planner to generate new plans.

The Reactive Executive is based on a classical
reactive execution system called RAPS. This event
and goal-driven system helps ensure quick reaction
loops by limiting deductive reasoning in the
execution of tasks. However, this limits the ability
of the executive to handle complicated problems.
To handle this, the Reactive Executive requests
problem solutions from a reasoning system called
Livingstone which monitors system status and
informs the executive of deduced solutions.
Working in conjunction with Livingstone, the
executive is able to robustly react to unforeseen
problems by choosing an alternative execution
behavior. This ability to quickly reconfigure in the
face of problems makes the executive extremely
robust.

Livingstone, the Mode Identification and
Reconfiguration System
One of the most unique features of the Remote
Agent is its ability to resolve system problems
through a model-based reasoning system.
Livingstone, also known as the Mode Identification
and Reconfiguration (MIR) system, eavesdrops on
command sent by the executive to the hardware,
monitors sensor signals and deduces the current
actual configuration of spacecraft systems; it then
reports the actual status of the spacecraft to the

executive. Livingstone maintains a complex model
of all hardware systems and their internal states and
keeps track of state changes and commands. In a
spacecraft, weight restrictions of do not allow
sensing all system conditions and so some
conditions can only be deduced indirectly from their
effects on other sensors.

One of Livingstone’s job is to deduce the status of
non-sensored conditions based on its system model
and senses. It does this by maintaining state models
of each piece of equipment and their interactions
and deducing that certain sensory data implies a
certain system state. If this state is different from
expected states, it reports these anomalies to the
executive. Another major job of Livingstone’s is to
help the executive solve problems. If the executive
is informed of a problem and doesn’t have an
immediate solution to work around it, it will request
a solution from Livingstone. Livingstone will reason
about the various pieces of equipment, their status
and interactions and try to deduce a new set of
actions that would lead to a solution of a problem.

Livingstone does its job by an extensive concurrent
state-machine model of all hardware. Each hardware
device is modeled as a state machine and all
interactions between machines are observed and
modeled. This model is able to identify the current
actual mode, identify anomalous behaviors, and the
models can be used to deduce solutions to identified
problems. For example, if a thrust engine valve
appears stuck in the off position, Livingstone could
recommend alternate valve configurations to
produce the desired thrust; if a particular device
does not work because it is appears stuck,
Livingstone might suggest that the executive try
again. This is a powerful capability which enables
the Deep Space One spacecraft to identify and
overcome temporary and permanent malfunctions in
its equipment.

Summary
The Remote Agent represents the state of the art in
autonomous spacecraft systems which demonstrates
principles and techniques which can be applied to
earth-bound robotic systems.

Remote Agent from Page 3

August 1999
5

Neural Net from Page 1
the weights until the total output error for the
training set is less than a given threshold.

Repeat
 total_error = 0
 For each training-sample input, x
 1) generate the actual output of the neural net, y, for this
 training sample, x, with the current weights.
 2) generate the desired output of the neural net, t.
 3) Compute the output layer change
 a) total_error = total_error + absolute(output_layer_change)
 4) Modify the output layer weights
 5) Compute the hidden layer change
 a) total_error = total_error + absolute(hidden_layer_change)
 6) Modify the hidden layer weights next training-sample
while total_error > threshold

Figure 1 - the backpropagation learning algorithm

As shown in figure 1, the algorithm is simple on its
surface. The problem is that each of the steps to
determine the adjustment and modifying the weights
gets a little bit complicated. We’ll review each of
these steps. Prior to training, you must pre-initialize
all weights to small random values. This assures that
the network doesn’t get lost in a never-ending loop.

Computing the Output Layer Change
The change for any output layer cell, j, is computed
by the formula:

for j = 0 to number_of_output_layer_cells
output_delta[j] = y[j] * (1-y[j]) * (t[j] - y[j])
total_error = total_error + abs(output_delta(j))

next j

Figure 2 - Computing the output layer error

This routine says that the amount of modification,
output_delta, for output layer cell, j, is equal to the
actual output times one minus the actual output
times the difference between the desired output and
the actual output. Additionally, we accumulate the
amount of change for each cell in the total_error
variable.

Computing the Output Layer Weight Change
Now that we know the amount of change that is
required for each output cell, we go ahead and
modify the weights for each cell accordingly. The
formula in figure 3 shows how this is done.

What this says is that for each output layer cell, we
modify the weight between that cell, j , and the
hidden layer cell, i. We do that by multiplying the

output of the hidden layer times the amount of
change needed for the output layer, output_delta(j),
and add that to the current value of the weight,
OutputWeight[i,j]. The value Nu is a learning rate
constant and determines how quickly the algorithm
learns; you will see it again in modifying the hidden
layer weights. It is usually a value like 0.8 in a range
of 0 to 1 indicating that weights should be modified
at 80 percent of the error.

for i = 0 to number_of_hidden_layer_cells
for j = 0 to number_of_output_layer_cells

OutputWeight[i, j] = OutputWeight[i, j] +
Nu * output_delta(j) * HiddenLayer(i)
next j

next I

Figure 3 - Changing the Output layer weights

Computing the Hidden Layer Change
Computing the weight change for the hidden layer is
a little more difficult since we first have to figure
out how a given hidden layer cell effects the output
layer and only modify it by that much. The value,
sum1, is used to figure out the amount of
modification for a given hidden layer cell by
determining its “efficacy” or amount of effect on the
output layer.

For j = 0 To number_of_hidden_layer_cells
 sum1 = 0
 For m = 0 To number_of_output_layer_cells
 sum1 = sum1 + output_delta(m) * OutputWeight(j, m)
 Next m
 hidden_delta(j) = HiddenLayer(j) * (1 - HiddenLayer(j)) * sum1
 total_error = total_error + abs(hidden_delta(j))
Next j

Figure 4 - Determining the Hidden Layer Change

As figure 4 shows, we go through each of the
hidden layer cells and figure out its efficacy on each
cell of the output layer. We then use that to
determine the amount of change, hidden_delta(j),
for each of the hidden layer cells. Again, we sum up
the amount of change for each cell in the value,
total_error, to determine when we are close to a
solution.

Computing the Hidden Layer Weight Change
The last step in the algorithm is to modify the
hidden layer weights. This is done identically to the
method used for the output layer weights. Figure 5
shows how this is done.

(see Neural Net on page 6)

August 1999
6

For i = 0 To number_of_input_layer_cells
 For j = 0 To number_of_hidden_layer_cells
 HiddenWeight[i, j] = HiddenWeight[i, j]

+ Nu * hidden_delta[j] * InputLayer[I]
 Next j
Next i

Figure 5 - Modifying the hidden layer weights

Again, we modify each weight to be what it
previously was plus the learning constant, Nu, times
the amount of change required for the hidden layer
cell times the input layer value.

An implementation of the algorithm
The author used the above algorithm in a small
neural net which was able to learn the binary value
of the images of the numerals 0 through 9. Each
numeral was input into a 35 cell input layer
organized in a 5 x 7 matrix. The input layer mapped
into 10 hidden layer cells and then the hidden layer
cells mapped to 4 output layer cells. By inputting a
given numeric character into the 5 x 7 input matrix,
the network produced the four-bit binary
representation at the output cells.

The network was trained on all 10 numerals, 0 - 9.
It took about 1 minute for the error to settle below
the threshold for any training session. After training,
the network reliably recognized characters even in
the presence of upwards of 15 percent noise. In
some cases, the input numeral was unidentifiable by
the author but the network correctly identified it.
Figure 6 illustrates the structure of the network in
this application and figure 7 shows the complete
learning algorithm used.

Bit 0 - LSB

Bit 3 - MSB

Bit 2

Bit 1

Input Layer
(35 cells)

Hidden Layer
(10 cells)

Output Layer
(4 cells)

Figure 6 - A character recognizing neural net

‘ Backpropagation Learning algorithm
Nu = 0.8
Threshold = 0.1

Repeat
 total_error = 0

 for sample = 0 to number_of_training_samples
 ‘ generate the correct answer for this sample
 t = generate_t(sample)

 ‘ Determine actual answer of network with current weights
 y = generate_y(sample)

 ‘ Determine output layer change
 for j = 0 to number_of_output_layer_cells
 output_delta[j] = y[j] * (1-y[j]) * (t[j] - y[j])
 total_error = total_error + abs(output_delta(j))
 next j

 ‘ Modify output layer weights
 for i = 0 to number_of_hidden_layer_cells
 for j = 0 to number_of_output_layer_cells
 OutputWeight[i, j] = OutputWeight[i, j] + Nu * output_delta(j) *

HiddenLayer(i)
 next j
 next I

 ‘ Determine Hidden layer change
 For j = 0 To number_of_hidden_layer_cells
 sum1 = 0
 For m = 0 To number_of_output_layer_cells
 sum1 = sum1 + output_delta(m) * OutputWeight(j, m)
 Next m
 hidden_delta(j) = HiddenLayer(j) * (1 - HiddenLayer(j)) * sum1
 total_error = total_error + abs(hidden_delta(j))
 Next j

 ‘ Modify hidden layer weights
 For i = 0 To number_of_input_layer_cells
 For j = 0 To number_of_hidden_layer_cells
 HiddenWeight[i, j] = HiddenWeight[i, j]

+ Nu * hidden_delta[j] * InputLayer[I]
 Next j
 Next I
 Next sample
while total_error > threshold

Neural Net from Page 5

Figure 7 - A complete backpropagation training algorithm

August 1999
7

Robotics Society of Southern California

President Randy Eubanks

Vice President Henry Arnold

Secretary Arthur Ed LeBouthillier

Treasurer Henry Arnold

Past President Jess Jackson

Member-at-Large Tom Carrol

Member-at-Large Pete Cresswell

Member-at-Large Jerry Burton

Faire Coordinator Joe McCord

Newsletter Editor Arthur Ed LeBouthillier

The Robot Builder (TRB) is published monthly by the
Robotics Society of Southern California. Membership in the
Society is $20.00 per annum and includes a subscription to
this newsletter.

Membership applications should be directed to:

Robotics Society of Southern California
Post Office Box 26044
Santa Ana, CA 92799-6044

Manuscripts, drawings and other materials submitted for
publication that are to be returned must be accompanied by a
stamped, self-addressed envelope or container. However,
RSSC is not responsible for unsolicited material.

We accept a wide variety of electronic formats but if you are
not sure, submit material in ascii or on paper. Electronic
copy should be sent to:

apendragn@earthlink.net

Arthur Ed LeBouthillier - editor
The Robotics Society of Southern California was founded in 1989 as a non-profit experimental robotics group. The goal

was to establish a cooperative association among related industries, educational institutions, professionals and particularly robot
enthusiasts. Membership in the society is open to all with an interest in this exciting field.

The primary goal of the society is to promote public awareness of the field of experimental robotics and encourage the
development of personal and home based robots.

We meet the 2nd Saturday of each month at California State University at Fullerton in the electrical engineering building
room EE321, from 12:30 until 3:00.

The RSSC publishes this monthly newsletter, The Robot Builder, that discusses various Society activities, robot
construction projects, and other information of interest to its members.

Membership/Renewal Application

Name

Address

City

Home Phone () - Work Phone () -

Annual Membership Dues: ($20) Check #
(includes subscription to The Robot Builder)

Return to: RSSC
POB 26044
Santa Ana CA 92799-6044

How did you hear about RSSC? __

August 1999
8

Please check your address label to be sure your subscription will
not expire!

RSSC
POB 26044
Santa Ana CA 92799-6044

